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former, time-step of the discretized EM field in such a way that

the obtained lumped-current is correct for both the FDTD EM-

field computation and the lumped-eleménV characteristic at

any given time-step.
The first above-mentioned requirement was recently addressed by
Durneyet al.[5] and the second by Piket-Ma al. [6], where a semi-
implicit average of present and former time-step values was used.
However, due to numerical complexities involved, these two aspects
have not been accounted for concurrently. The parametric technique
[7] is an attempt to take these two requirements simultaneously into

Abstract—A general algorithm for including large-signal active three- account. The technlq_ue is simple e_lnd accu_rate for simple lumped-
terminal models into the finite-difference time-domain (FDTD) method ~€lements, i.e., a resistor, a capacitor, a diode, etc. However, for
is presented. A dynamic interface between the active device and the complicated lumped-element circuits, it is difficult to simulate their
FDTD lattice is used to simulate the prominent nonlinear time-dependant pehavior by the method of media parameters variation. In this paper,
behavior of the three-terminal active device, which is connected across an FET connected across a unilaterally gapped slotline (Fig. 1)
multiple FDTD cells. A technique for introducing an internal electromag- .
netic (EM) field absorber into the FDTD three-terminal active device IS takgn as .an example of a ge.neral metho‘_’ fpr lumped-element
model in order to eliminate undesired current coupling is discussed. Modeling. Since the FET large-signal model is indeed a complex
Numerical comparison shows this method is accurate and expected to three-terminal nonlinear lumped-element circuit containing passive,
have general utility for other complicated hybrid lumped-circuit FDTD  gouyrce, and control elements, the method presented here is expected
modeling situations. to be useful for any other lumped-element/circuit models. In addition,

Index Terms—Active devices, finite-difference time-domain method, in this paper, the decoupling between the lumped gate current and
large-signal models. lumped drain current in the FET FDTD model is discussed.

Hybrid FDTD Large-Signal Modeling
of Three-Terminal Active Devices

Qiang Chen and V. F. Fusco

l. INTRODUCTION Il. INTERFACE BETWEEN SLOTLINE FIELD AND FET MODEL

Lumped-element modeling is a very important aspect for the future Table I shows the parameters of a general packaged large-signal
development and application of the finite-difference time-domaffET modef; [8] customized for the NE72089 device to be included
(FDTD) method [1]-[7]. It is well accepted that a lumped elemerifto the FDTD algorithm. Its nonlinear port (source and drain)
can be represented by lumped-current(s) in the FDTD algorithtirents can be calculated by time-domain analysis by solving a

To accurately represent a general lumped-element case, this lum&d-of differential equations provided the port voltages are known.
current should satisfy two requirements. Thus, the obtained lumped currents are then used in the FDTD

1) It should be connected across multiple, rather than (as aalgr:)rithm 'f:qr tge Lnteracﬂon of FDITD EM f(ijelds and the FET
present) single, FDTD cells so that an arbitrarily sized lumpe avior. Fig. 1 shows the port voltages and port currents as an
element can be modeled. interface between the distributed fields and the FET model in the

2) A dynamic interface between the FDTD electromagnetic (E Iot_Ilne example. The unllatergl slotline gap b_etweer_l the source and
fields and the lumped elementsV behavior (i.e., the lumped- rain of the FET is for dc bias. From the figure, it can be seen

current) should be calculated using the present, rather than {Hét de-bias voltage_s are _applied_ and simul_ated directly in the FET
model. Thus, only signal fields (with no dc bias) are analyzed by the
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TABLE |
PARAMETERS OF A LARGE-SIGNAL NE72089 FET MDEL

IDS Curtice model Gate model Parasitics Breakdown Package
vt0=-1.17 V rgs=15.3 Q rg=1 Q gsfwd=2 cin=6.77x10" pF
beta=3.04x10 ~ gscap=2 rd=0.1 Q gdrev=2 cf=1.79x107 pF
lambda=4.88x10 ~ cgs0=0.774 pF rs=6 Q vbi=0.8 V  ¢in=3.36x107 pF
alpha=2.39 gdcap=2 1g=0.991 nH is=10™
tau=10 ps cgd0=0.153 pF 1d=0.666 nH n=1.1

FC=0.5 cds=0.213 pF

EM absorber
. v : D
JE_ ([oH, OH, ; . Y
Zx_ 1 2 Y sH - .
dr el dy Iz Tx AyAz Ips Vs
S - .S
E Ex.
X-GS X-DS (a) ®
! 7 . A .
V= J. E dx 1 GS-Sig 1 DS-Sig Ideal lumped element FET model Equivalent FET model
o * without EM induced coupling for FDTD implementation
VGS—Sig l lVDS-Sig lEratlon Algorithm ﬂ Fig. 3. An equivalent FET model for FDTD simulation.

FET ><Modc1 1 A

intrinsic coupling. In this way, a lumped element connected across
any number of grid cells can be accurately modeled at each time-step.
Since only the FDTD cells occupied by the gate and drain currents are
involved, and only a few nonlinear element values in the FET model
need to be updated in the lumped-current value computation shown
in Fig. 2, the computation time required is very small when compared
with the FDTD iteration routine at each time-step. Also, because the
present time-step current values are computed based on accurately
obtained previous time-step values, the convergent speed for present
time-step current computation is quite high. It has been found that
in this paper’s large-signal FET model application, the explicit and
semi-implicit method described in [1], [6] are not applicable due to
the integral calculation of lumped-element voltages across multiple
cells. Also, if the present time-step currents are approximated by

previous time-step values so as to save the iteration procedure for

of interaction among various elements, dc bias inclusion might bg\rate current-value computation, numerical errors can accumulate
required. This will increase the computation effort conS|derabI¥{uiCk|y and lead to instability.

The electrical fields at the lumped-element position are calculated

using Maxwell's equations. As an example, at the position where

an z-directed lumped-currentias-sig Or ips-sig) is located (Fig. lll. L uMPED-CURRENT DECOUPLING

1), the E,-field component equation is given in Fig. 2. Using a As described above, an FET model can be simplified as two lumped
central-difference formula at time-stép + 1/2) and spacial grid currents, i.e., the gate curreitts and drain currenips [see Fig.

(i,j, k), a discretized FDTD iteration formula of the equation caB(a)], which are linked together solely through the mathematical
be obtained. The signal voltage at the gate or drain port is obtainedpression of the FET lumped-circuit model. The interface analysis
by integration of £, over the slot widthiW (see Fig. 1). Then the shows how the values of these two currents are calculated so that
obtainedVas-siz andVps-sig are fed into the FET model where thethey accurately represent the FET gate and drain currents under
port currentias-sig andips-sig are obtained. These currents are thedevice operational conditions. In the lumped-current model shown
compared with the original currents in the Maxwell-equation solutiom Fig. 3(a), there is additional EM coupling between gate and
If their absolute difference values do not satisfy previously definettain currents. However, since the FDTD algorithm is a distributed-
accuracy requirements, a Newton iteration method is used to locagameter EM simulator, this model is difficult to implement due to
the correct values. Fig. 2 shows the procedures which are executethatstrong EM coupling through the FDTD cells between the two
each time-step. The inner loop in Fig. 2 is the drain voltage/curreciirrents since they are physically near to each other. This problem,
computation loop. It takes the gate voltage and current values framfact, represents the dilemma of expressing an internal lumped-
the outer loop, which is the gate voltage/current computation loogrcuit coupling mechanism in a distributed-parameter environment.
These two loops are interlinked to each other by the FET-model this paper, the simplified FET model [Fig. 3(a)] is modified into

Output

Fig. 2. FDTD-field and FET-model interface analysis at each time-step;
is the minimum precision requirement.
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Fig. 4. An EM-field absorber in the FDTD FET modeling. (a) Width. (b)

Height. Fig. 6. Large-signal numerical result comparison (all the other dimensions
of the unilaterally gapped slotline are shown in Fig. 4).
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Fig. 5. Decoupling effect of different-sized absorber in the FDTD FET . . . |

model. Curve 1 is the input Gaussian voltage. Curve 2 is the output FET drain ~
voltage with no absorber, which shows strong FET self-oscillation. Curve 3 is
the drain voltage with an absorber sizew& 36 cells,b = 30 cells, which

still shows some gate and drain coupling. Curve 4 is the drain voltage with 1,=30 cells, 1, =16 cells, €p e =108
an absorber size the same as the cross-section plane of the slotline FDTD

co‘mputation‘ domain where the gate _and drain‘cou_pling is_ eIiminatgd_ Cur,y@_ 7. Large-signal numerical results of the FET under different amplitude
5 is the drain-voltage result from a time-domain differential analysis of the Gz sine-wave excitation. Drain-voltage curves corresponding to different
FET large-signal model. source signal amplitude are shown. A 1-V source signal is shown for phase
reference (all the other dimensions of the unilaterally gapped slotline are
an equivalent form suitable for FDTD implementation, as shown f'oWn in Fig. 4).
Fig. 3(b). An EM absorber is inserted between the gate and the drain
so that they are electromagnetically separated when applied into the
FDTD lattice. This modified model has the same physical meaning
and mathematical expression as Fig. 3(a). The only difference isFig- 6 illustrates large-signal numerical results. In this figure,
that it is EM-simulator oriented. Here, modified-dispersive absorbin§is paper's FDTD FET modeling, and the time-domain differential
boundary conditions [9] are applied to the surface of the absorbEET-model analysis under a 2.5-V Gaussian-source excitation, are
Fig. 4 shows the application of such an FDTD-oriented FET modépmpared. In order to do this comparison, the relative dielectric
connected across a gapped slotline. The thickness of the absorb&o[gstant of the slotline substrate is set to be 1 in the FDTD analysis.
the same as the width of the gap, which is four cells in this caslso, the length of the interconnected slotline is set to the minimum
The width [Fig. 4(a)] and height [Fig. 4(b)] of the absorber are madélues of one cell only. The two gate-voltage curves agree very
variable so that the effect of this numerical absorber can be examinkgll. The FDTD drain-signal voltage curve is slightly retarded with
(see Fig. 5). It can be concluded from Fig. 5 that the gate— af@spect to the analytic one, due to the one-cell slotline interconnection.
drain—current coupling is very strong in the FDTD FET model if ndrig. 7 shows the nonlinear characteristics of the FET under large-
EM-field absorber is used between them. To eliminate this coupligignal excitation. The average computation time for one curve in this
from the FET FDTD modeling, a large-size absorber has to be us@gmerical example is 130 min on a Sun Sparc station 5 computer.
In this paper, an absorber with the same cross-section size as thean be seen that when compared with the reference source signal,
of the slotline FDTD computation domain, i.e.,= w; + w + wo  there is little distortion to the drain-voltage curve of 1-V sine-wave
andb = hy + h + he, is used to eliminate the undesired gate—draiexcitation after it reaches steady state. With the increase of the source
coupling. It is understood that the insertion of a local absorber caignal amplitude, the output drain voltage becomes more distorted
affect the EM propagation close to the FET. However, compareie to the FETI-V feature. When the source amplitude is 3 V,
with the dominant FET effects, EM-propagation effects around thbke distortion becomes more obvious. This paper’'s method has been
device appear to be relatively weak. This issue will be verified in thapplied to the analysis of an active FET slot-ring antenna where
following numerical discussion. the numerical prediction of oscillating frequency is confirmed to

0 0.2 0.4 0.6 0.8 1
Time (ns)

IV. LARGE-SIGNAL NUMERICAL RESULTS
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within 1.6% by measurement [10]. These verify the accuracy of Resonance in a Cylindrical-Triangular
the large-signal FET FDTD modeling algorithm presented in this Microstrip Structure
paper.

Kin-Lu Wong and Shan-Cheng Pan

V. CONCLUSION

. . . . . . Abstract—Full-wave solutions for the complex-resonant frequency of
In this paper, a general algorithm for including large-signal activg yjangular microstrip patch printed on a cylindrical substrate are

three-terminal models into the FDTD method is presented. A dynanpsented. Curvature effects on the complex-resonant frequency, as well
interface between the active device and the FDTD lattice is usesglthe quality factor of the cylindrical-triangular microstrip structure, are
to simulate the prominent nonlinear time-dependant behavior of t@alyzed. Measured resonant frequencies are also shown for comparison.

. . . . . . o]
three-terminal active device, which is connected across multlp?e

od agreement between measured and theoretical results is obtained.

FDTD cells. A technique for introducing an internal EM-field ab- Index Terms—Microstrip antenna, microstrip resonator.
sorber into the FDTD three-terminal active-device model in order

to eliminate undesired current coupling is discussed. Numerical
comparison shows this method is accurate and is expected to have

|. INTRODUCTION

general utility for other complicated hybrid lumped-circuit FDTD Characteristics of triangular microstrip structures used as resonators
modeling situations. [1] or radiators [2], [3] have been reported. Results have shown

that, as a resonator, the triangular microstrip structure at its fun-

damental mode (TM [1]) has a lower radiation loss than the
ACKNOWLEDGMENT circular microstrip resonators. It is also reported that, compared to

the rectangular microstrip patch antenna, the microstrip antenna with

The authors would like to thank Dr. A. D. Patterson and Dr. J. G triangular patch is physically smaller and has similar radiation
Leckey for valuable suggestions and fruitful discussions on FEfoperties [2]. It is also noted that the related studies are mainly of

modeling. planar geometries, and very scant results for the triangular microstrip

patch mounted on a cylindrical substrate are available. This kind of
cylindrical microstrip structure has the advantage of conformability
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